LP decoding of expander codes: a simpler proof

نویسنده

  • Michael Viderman
چکیده

A code C ⊆ Fn 2 is a (c, ǫ, δ)-expander code if it has a Tanner graph, where every variable node has degree c, and every subset of variable nodes L0 such that |L0| ≤ δn has at least ǫc|L0| neighbors. Feldman et al. (IEEE IT, 2007) proved that LP decoding corrects 3ǫ−2 2ǫ−1 · (δn − 1) errors of (c, ǫ, δ)expander code, where ǫ > 2 3 + 1 3c . In this paper, we provide a simpler proof of their result and show that this result holds for every expansion parameter ǫ > 2 3 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guessing Facets: Polytope Structure and Improved LP Decoding

In this paper we investigate the structure of the fundamental polytope used in the Linear Programming decoding introduced by Feldman, Karger and Wainwright. We begin by showing that for expander codes, every fractional pseudocodeword always has at least a constant fraction of non-integral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by ...

متن کامل

On the Complexity of Exact Maximum-Likelihood Decoding for Asymptotically Good Low Density Parity Check Codes

Since the classical work of Berlekamp, McEliece and van Tilborg, it is well known that the problem of exact maximum-likelihood (ML) decoding of general linear codes is NP-hard. In this paper, we show that exact ML decoding of a classs of asymptotically good error correcting codes—expander codes, a special case of low density parity check (LDPC) codes— over binary symmetric channels (BSCs) is po...

متن کامل

Low-Density Parity-Check Codes: Constructions and Bounds

Low-density parity-check (LDPC) codes were introduced in 1962, but were almost forgotten. The introduction of turbo-codes in 1993 was a real breakthrough in communication theory and practice, due to their practical effectiveness. Subsequently, the connections between LDPC and turbo codes were considered, and it was shown that the latter can be described in the framework of LDPC codes. In recent...

متن کامل

Eigenvalue bounds on the pseudocodeword weight of expander codes

Four different ways of obtaining low-density parity-check codes from expander graphs are considered. For each case, lower bounds on the minimum stopping set size and the minimum pseudocodeword weight of expander (LDPC) codes are derived. These bounds are compared with the known eigenvalue-based lower bounds on the minimum distance of expander codes. Furthermore, Tanner’s parity-oriented eigenva...

متن کامل

Error Exponents of Expander Codes

We show that expander codes attain the capacity of the binary-symmetric channel under iterative decoding. The error probability has a positive exponent for all rates between zero and channel capacity. The decoding complexity grows linearly with code length.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.2568  شماره 

صفحات  -

تاریخ انتشار 2012